Translate

Thursday, May 02, 2013


Bearing (mechanical) 

From Wikipedia, the free encyclopedia
 

A bearing is a machine element that constrains relative motion between moving parts to only the desired motion. The design of the bearing may, for example, provide for free linear movement of the moving part or for free rotation around a fixed axis; or, it may prevent a motion by controlling the vectors of normal forces that bear on the moving parts. Bearings are classified broadly according to the type of operation, the motions allowed, or to the directions of the loads (forces) applied to the parts.

The term "bearing" is derived from the verb "to bear";[1] a bearing being a machine element that allows one part to bear (i.e., to support) another. The simplest bearings are bearing surfaces, cut or formed into a part, with varying degrees of control over the form, size, roughness and location of the surface. Other bearings are separate devices installed into a machine or machine part. The most sophisticated bearings for the most demanding applications are very precise devices; their manufacture requires some of the highest standards of current technology.

History

The invention of the rolling bearing, in the form of wooden rollers supporting, or bearing, an object being moved is of great antiquity, and may predate the invention of the wheel.

Though it is often claimed that the Egyptians used roller bearings in the form of tree trunks under sleds,[2] this is modern speculation.[3] They are depicted in their own drawings in the tomb of Djehutihotep [4] as moving massive stone blocks on sledges with the runners lubricated with a liquid which would constitute a plain bearing. There are also Egyptian drawings of bearings used with hand drills.[5]

The earliest recovered example of a rolling element bearing is a wooden ball bearing supporting a rotating table from the remains of the Roman Nemi ships in Lake Nemi, Italy. The wrecks were dated to 40 AD.[6][7]

Leonardo da Vinci incorporated drawings of ball bearings in his design for a helicopter around the year 1500. This is the first recorded use of bearings in an aerospace design. However, Agostino Ramelli is the first to have published sketches of roller and thrust bearings.[2] An issue with ball and roller bearings is that the balls or rollers rub against each other causing additional friction which can be prevented by enclosing the balls or rollers in a cage. The captured, or caged, ball bearing was originally described by Galileo in the 17th century.[citation needed] The mounting of bearings into a set was not accomplished for many years after that. The first patent for a ball race was by Philip Vaughan of Carmarthen in 1794.

Bearings saw use for holding wheel and axles. The bearings used there were plain bearings that were used to greatly reduce friction over that of dragging an object by making the friction act over a shorter distance as the wheel turned.

The first plain and rolling-element bearings were wood closely followed by bronze. Over their history bearings have been made of many materials including ceramic, sapphire, glass, steel, bronze, other metals and plastic (e.g., nylon, polyoxymethylene, polytetrafluoroethylene, and UHMWPE) which are all used today.

Watch makers produce "jeweled" watches using sapphire plain bearings to reduce friction thus allowing more precise time keeping.

Even basic materials can have good durability. As examples, wooden bearings can still be seen today in old clocks or in water mills where the water provides cooling and lubrication.

The first practical caged-roller bearing was invented in the mid-1740s by horologist John Harrison for his H3 marine timekeeper. This uses the bearing for a very limited oscillating motion but Harrison also used a similar bearing in a truly rotary application in a contemporaneous regulator clock.

A patent on ball bearings, reportedly the first, was awarded to Jules Suriray, a Parisian bicycle mechanic, on 3 August 1869. The bearings were then fitted to the winning bicycle ridden by James Moore in the world's first bicycle road race, Paris-Rouen, in November 1869.[8]

In 1883, Friedrich Fischer, founder of FAG, developed an approach for milling and grinding balls of equal size and exact roundness by means of a suitable production machine and formed the foundation for creation of an independent bearing industry.

The modern, self-aligning design of ball bearing is attributed to Sven Wingquist of the SKF ball-bearing manufacturer in 1907, when he was awarded Swedish patent No. 25406 on its design.

Henry Timken, a 19th century visionary and innovator in carriage manufacturing, patented the tapered roller bearing in 1898. The following year he formed a company to produce his innovation. Over a century the company grew to make bearings of all types, including specialty steel and an array of related products and services.

Erich Franke invented and patented the wire race bearing in 1934. His focus was on a bearing design with a cross section as small as possible and which could be integrated into the enclosing design. After World War II he founded together with Gerhard Heydrich the company Franke & Heydrich KG (today Franke GmbH) to push the development and production of wire race bearings.

Richard Stribeck’s extensive research [9][10] on ball bearing steels identified the metallurgy of the commonly used 100Cr6 (AISI 52100) [11] showing coefficient of friction as a function of pressure.

Designed in 1968 and later patented in 1972, Bishop-Wisecarver's co-founder Bud Wisecarver created vee groove bearing guide wheels, a type of linear motion bearing consisting of both an external and internal 90 degree vee angle.[12][better source needed]

In the early 1980s, Pacific Bearing's founder, Robert Schroeder, invented the first bi-material plain bearing which was size interchangeable with linear ball bearings. This bearing had a metal shell (aluminum, steel or stainless steel) and a layer of Teflon-based material connected by a thin adhesive layer.[13]

Today ball and roller bearings are used in many applications which include a rotating component. Examples include ultra high speed bearings in dental drills, aerospace bearings in the Mars Rover, gearbox and wheel bearings on automobiles, flexure bearings in optical alignment systems and bicycle wheel hubs.

Common

By far, the most common bearing is the plain bearing, a bearing which uses surfaces in rubbing contact, often with a lubricant such as oil or graphite. A plain bearing may or may not be a discrete device. It may be nothing more than the bearing surface of a hole with a shaft passing through it, or of a planar surface that bears another (in these cases, not a discrete device); or it may be a layer of bearing metal either fused to the substrate (semi-discrete) or in the form of a separable sleeve (discrete). With suitable lubrication, plain bearings often give entirely acceptable accuracy, life, and friction at minimal cost. Therefore, they are very widely used.

However, there are many applications where a more suitable bearing can improve efficiency, accuracy, service intervals, reliability, speed of operation, size, weight, and costs of purchasing and operating machinery.

Thus, there are many types of bearings, with varying shape, material, lubrication, principle of operation, and so on.

Principles of operation

There are at least six common principles of operation:


Motions

Common motions permitted by bearings are:

  • axial rotation e.g. shaft rotation
  • linear motion e.g. drawer
  • spherical rotation e.g. ball and socket joint
  • hinge motion e.g. door, elbow, knee

Friction

Reducing friction in bearings is often important for efficiency, to reduce wear and to facilitate extended use at high speeds and to avoid overheating and premature failure of the bearing. Essentially, a bearing can reduce friction by virtue of its shape, by its material, or by introducing and containing a fluid between surfaces or by separating the surfaces with an electromagnetic field.

  • By shape, gains advantage usually by using spheres or rollers, or by forming flexure bearings.
  • By material, exploits the nature of the bearing material used. (An example would be using plastics that have low surface friction.)
  • By fluid, exploits the low viscosity of a layer of fluid, such as a lubricant or as a pressurized medium to keep the two solid parts from touching, or by reducing the normal force between them.
  • By fields, exploits electromagnetic fields, such as magnetic fields, to keep solid parts from touching.

Combinations of these can even be employed within the same bearing. An example of this is where the cage is made of plastic, and it separates the rollers/balls, which reduce friction by their shape and finish.

Loads

Bearings vary greatly over the size and directions of forces that they can support.

Forces can be predominately radial, axial (thrust bearings) or bending moments perpendicular to the main axis.

Speeds

Different bearing types have different operating speed limits. Speed is typically specified as maximum relative surface speeds, often specified ft/s or m/s. Rotational bearings typically describe performance in terms of the product DN where D is the diameter (often in mm) of the bearing and N is the rotation rate in revolutions per minute.

Generally there is considerable speed range overlap between bearing types. Plain bearings typically handle only lower speeds, rolling element bearings are faster, followed by fluid bearings and finally magnetic bearings which are limited ultimately by centripetal force overcoming material strength.

Play

Some applications apply bearing loads from varying directions and accept only limited play or "slop" as the applied load changes. One source of motion is gaps or "play" in the bearing. For example, a 10 mm shaft in a 12 mm hole has 2 mm play.

Allowable play varies greatly depending on the use. As example, a wheelbarrow wheel supports radial and axial loads. Axial loads may be hundreds of newtons force left or right, and it is typically acceptable for the wheel to wobble by as much as 10 mm under the varying load. In contrast, a lathe may position a cutting tool to ±0.02 mm using a ball lead screw held by rotating bearings. The bearings support axial loads of thousands of newtons in either direction, and must hold the ball lead screw to ±0.002 mm across that range of loads.

Stiffness

A second source of motion is elasticity in the bearing itself. For example, the balls in a ball bearing are like stiff rubber, and under load deform from round to a slightly flattened shape. The race is also elastic and develops a slight dent where the ball presses on it.

The stiffness of a bearing is how the distance between the parts which are separated by the bearing varies with applied load. With rolling element bearings this is due to the strain of the ball and race. With fluid bearings it is due to how the pressure of the fluid varies with the gap (when correctly loaded, fluid bearings are typically stiffer than rolling element bearings).

Service life

Fluid and magnetic bearings

Fluid and magnetic bearings can have practically indefinite service lives. In practice, there are fluid bearings supporting high loads in hydroelectric plants that have been in nearly continuous service since about 1900 and which show no signs of wear.

Rolling element bearings

Rolling element bearing life is determined by load, temperature, maintenance, lubrication, material defects, contamination, handling, installation and other factors. These factors can all have a significant effect on bearing life. For example, the service life of bearings in one application was extended dramatically by changing how the bearings were stored before installation and use, as vibrations during storage caused lubricant failure even when the only load on the bearing was its own weight;[14] the resulting damage is often false brinelling. Bearing life is statistical: several samples of a given bearing will often exhibit a bell curve of service life, with a few samples showing significantly better or worse life. Bearing life varies because microscopic structure and contamination vary greatly even where macroscopically they seem identical.

Plain bearings

For plain bearings some materials give much longer life than others. Some of the John Harrison clocks still operate after hundreds of years because of the lignum vitae wood employed in their construction, whereas his metal clocks are seldom run due to potential wear.

Flexure bearings

Flexure bearings rely on elastic properties of material.Flexure bearings bend a piece of material repeatedly. Some materials fail after repeated bending, even at low loads, but careful material selection and bearing design can make flexure bearing life indefinite.

Short-life bearings

Although long bearing life is often desirable, it is sometimes not necessary. Harris describes a bearing for a rocket motor oxygen pump that gave several hours life, far in excess of the several tens of minutes life needed.[14]

L10 life

Bearings are often specified to give an "L10" life (outside the USA, it may be referred to as "B10" life.) This is the life at which ten percent of the bearings in that application can be expected to have failed due to classical fatigue failure (and not any other mode of failure like lubrication starvation, wrong mounting etc.), or, alternatively, the life at which ninety percent will still be operating.The L10 life of the bearing is theoretical life and may not represent service life of the bearing. Bearings are also rated using C0 (static loading) value. This is the basic load rating as a reference, and not an actual load value.

External factors

The service life of the bearing is affected by many parameters that are not controlled by the bearing manufactures. For example, bearing mounting, temperature, exposure to external environment, lubricant cleanliness and electrical currents through bearings etc.

Maintenance and lubrication

Many bearings require periodic maintenance to prevent premature failure, although some such as fluid or magnetic bearings may require little maintenance.

Most bearings in high cycle operations need periodic lubrication and cleaning, and may require adjustment to minimise the effects of wear.

Bearing life is often much better when the bearing is kept clean and well-lubricated. However, many applications make good maintenance difficult. For example bearings in the conveyor of a rock crusher are exposed continually to hard abrasive particles. Cleaning is of little use because cleaning is expensive, yet the bearing is contaminated again as soon as the conveyor resumes operation. Thus, a good maintenance program might lubricate the bearings frequently but never clean them.

Packing

Some bearings use a thick grease for lubrication, which is pushed into the gaps between the bearing surfaces, also known as packing. The grease is held in place by a plastic, leather, or rubber gasket (also called a gland) that covers the inside and outside edges of the bearing race to keep the grease from escaping.

Bearings may also be packed with other materials. Historically, the wheels on railroad cars used sleeve bearings packed with waste or loose scraps cotton or wool fiber soaked in oil, then later used solid pads of cotton. [15]

Ring oiler

For more details on this topic, see Ring oiler.

Bearings can be lubricated by a metal ring that rides loosely on the central rotating shaft of the bearing. The ring hangs down into a chamber containing lubricating oil. As the bearing rotates, viscous adhesion draws oil up the ring and onto the shaft, where the oil migrates into the bearing to lubricate it. Excess oil is flung off and collects in the pool again.[16]

Splash lubrication

Some machines contain a pool of lubricant in the bottom, with gears partially immersed in the liquid, or crank rods that can swing down into the pool as the device operates. The spinning wheels fling oil into the air around them, while the crank rods slap at the surface of the oil, splashing it randomly on the interior surfaces of the engine. Some small internal combustion engines specifically contain special plastic flinger wheels which randomly scatter oil around the interior of the mechanism. [17]

Pressure lubrication

For high speed and high power machines, a loss of lubricant can result in rapid bearing heating and damage due to friction. Also in dirty environments the oil can become contaminated with dust or debris that increases friction. In these applications, a fresh supply of lubricant can be continuously supplied to the bearing and all other contact surfaces, and the excess can be collected for filtration, cooling, and possibly reuse. Pressure oiling is commonly used in large and complex internal combustion engines in parts of the engine where directly splashed oil cannot reach, such as up into overhead valve assemblies.[18] High speed turbochargers also typically require a pressurized oil system to cool the bearings and keep them from burning up due to the heat from the turbine.

Types

There are many different types of bearings.

Type
Description
Friction
Speed
Life
Notes
Rubbing surfaces, usually with lubricant; some bearings use pumped lubrication and behave similarly to fluid bearings.
Depends on materials and construction, PTFE has coefficient of friction ~0.05-0.35, depending upon fillers added
Good, provided wear is low, but some slack is normally present
Low to very high
Low to very high - depends upon application and lubrication
Widely used, relatively high friction, suffers from stiction in some applications. Depending upon the application, lifetime can be higher or lower than rolling element bearings.
Ball or rollers are used to prevent or minimise rubbing
Rolling coefficient of friction with steel can be ~0.005 (adding resistance due to seals, packed grease, preload and misalignment can increase friction to as much as 0.125)
Good, but some slack is usually present
Moderate to high (often requires cooling)
Moderate to high (depends on lubrication, often requires maintenance)
Used for higher moment loads than plain bearings with lower friction
Off-center bearing rolls in seating
Low
Low due to flexing
Low
Adequate (requires maintenance)
Mainly used in low-load, high precision work such as clocks. Jewel bearings may be very small.
Fluid is forced between two faces and held in by edge seal
Zero friction at zero speed, low
Very high
Very high (usually limited to a few hundred feet per second at/by seal)
Virtually infinite in some applications, may wear at startup/shutdown in some cases. Often negligible maintenance.
Can fail quickly due to grit or dust or other contaminants. Maintenance free in continuous use. Can handle very large loads with low friction.
Faces of bearing are kept separate by magnets (electromagnets or eddy currents)
Zero friction at zero speed, but constant power for levitation, eddy currents are often induced when movement occurs, but may be negligible if magnetic field is quasi-static
Low
No practical limit
Indefinite. Maintenance free. (with electromagnets)
Active magnetic bearings (AMB) need considerable power. Electrodynamic bearings (EDB) do not require external power.
Material flexes to give and constrain movement
Very low
Low
Very high.
Very high or low depending on materials and strain in application. Usually maintenance free.
Limited range of movement, no backlash, extremely smooth motion
Stiffness is the amount that the gap varies when the load on the bearing changes, it is distinct from the friction of the bearing.
 
The entire wiki article, including some nifty images and one animation, can be found at:  http://en.wikipedia.org/wiki/Bearing_(mechanical)

 

No comments: