Solar cooker
From Wikipedia, the free encyclopedia
A solar cooker, or solar
oven, is a device which uses the energy of direct sunlight to heat, cook or
pasteurize
food or drink. The vast majority of solar cookers presently in use are
relatively cheap, low-tech devices. Because they use no fuel and cost nothing to
operate, many nonprofit organizations are promoting their use worldwide in
order to help reduce fuel costs (for low-income people) and air pollution, and
to slow down the deforestation and desertification
caused by gathering firewood for cooking. Solar cooking is a form of outdoor cooking
and is often used in situations where minimal fuel consumption is important, or
the danger of accidental fires is high.
Contents
|
Principles
Simple solar cookers use the
following basic principles:
- Concentrating sunlight: A reflective mirror of polished
glass, metal or metallised film concentrates light and heat from the sun on a small
cooking area, making the energy more concentrated and increasing its
heating power.
- Converting light to heat: A black or low reflectivity surface on a food container or the inside of a solar
cooker improves the effectiveness of turning light into heat. Light absorption
converts the sun's visible light into heat, substantially improving the
effectiveness of the cooker.
- Trapping heat: It is important to reduce convection
by isolating the air inside the cooker from the air outside the cooker. A
plastic bag or tightly sealed glass cover traps the hot air inside. This
makes it possible to reach temperatures on cold and windy days similar to
those possible on hot days.
- Greenhouse effect: Glass transmits visible light but blocks infrared
thermal radiation from escaping. This amplifies the heat trapping effect.
Operation
Different kinds of solar cookers use
somewhat different methods of cooking, but most follow the same basic
principles.
Food is prepared as if for an oven
or stove top. However, because food cooks faster when it is in smaller pieces,
food placed inside a solar cooker is usually cut into smaller pieces than it
might otherwise be.[2]
For example, potatoes
are usually cut into bite-sized pieces rather than roasted whole.[3]
For very simple cooking, such as melting butter or cheese, a lid may not be needed and the
food may be placed on an uncovered tray
or in a bowl. If several foods are to be cooked separately, then they are
placed in different containers.
The container of food is placed
inside the solar cooker, which may be elevated on a brick, rock, metal trivet, or other heat sink,
and the solar cooker is placed in direct sunlight.[2]
If the solar cooker is entirely in direct sunlight, then the shadow of the
solar cooker will not overlap with the shadow of any nearby object. Foods that
cook quickly may be added to the solar cooker later. Rice for a mid-day meal
might be started early in the morning, with vegetables, cheese, or meat added
to the solar cooker in the middle of the morning. Depending on the size of the
solar cooker and the number and quantity of cooked foods, a family may use one
or more solar cookers.
The solar cooker is turned towards
the sun and left until the food is cooked. Unlike cooking on a stove or over a
fire, which may require more than an hour of constant supervision, food in a
solar cooker is generally not stirred or turned over, both because it is
unnecessary and because opening the solar cooker allows the trapped heat to
escape and thereby slows the cooking process. If wanted, the solar cooker may
be checked every one to two hours, to turn the cooker to face the sun more
precisely and to ensure that shadows from nearby buildings or plants have not
blocked the sunlight. If the food is to be left untended for many hours during
the day, then the solar cooker is often turned to face the point where the sun
will be when it is highest in the sky, instead of towards its current position.[4]
The cooking time depends primarily
on the equipment being used, the amount of sunlight at the time, and the
quantity of food that needs to be cooked. Air temperature,
wind, and latitude also affect performance. Food cooks faster in the two hours
before and after the local solar noon than it does in either the early
morning or the late afternoon. Large quantities of food, and food in large
pieces, take longer to cook. As a result, only general figures can be given for
cooking time. With a small solar panel cooker, it might be possible to melt
butter in 15 minutes, to bake cookies in 2 hours, and to cook rice for four
people in 4 hours. However, depending on local conditions and the solar cooker
type, these projects could take half as long, or twice as long.
A low-cost thermometer has been
invented to provide a reliable method for determining when the cooker has
reached the temperature for pasteurization of water or milk (65 °C or 149 °F).
This device is called a Water Pasteurization Indicator or WAPI.[5]
It is difficult to burn food in a
solar cooker.[3]
Food that has been cooked even an hour longer than necessary is usually
indistinguishable from minimally cooked food. The exception to this rule is
some green vegetables, which quickly change from a perfectly cooked bright
green to olive drab, while still retaining the desirable texture.
For most foods, such as rice, the
typical person would be unable to tell how it was cooked from looking at the
final product. There are some differences, however: Bread and cakes brown on
their tops instead of on the bottom. Compared to cooking over a fire, the food
does not have a smoky flavor.
Simple
designs
A box cooker has a transparent glass
or plastic top, and it may have additional reflectors to concentrate sunlight
into the box. The top can usually be removed to allow dark pots containing food
to be placed inside. One or more reflectors of shiny metal or foil-lined
material may be positioned to bounce extra light into the interior of the oven
chamber. Cooking containers and the inside bottom of the cooker should be
dark-colored or black. Inside walls should be reflective to reduce radiative
heat loss and bounce the light towards the pots and the dark bottom, which is
in contact with the pots. The box should have insulated sides. Thermal insulation for the solar box cooker must be able to withstand
temperatures up to 150 °C (300 °F) without melting or out-gassing. Crumpled
newspaper, wool, rags, dry grass, sheets of cardboard, etc. can be used to
insulate the walls of the cooker. Metal pots and/or bottom trays can be
darkened either with flat-black spray paint (one that is non-toxic when
warmed), black tempera paint, or soot from a fire. The solar box cooker typically
reaches a temperature of 150 °C (300 °F). This is not as hot as a standard
oven, but still hot enough to cook food over a somewhat longer period of time.
Food containing a lot of moisture cannot get much hotter than 100 °C (212 °F)
in any case, so it is not always necessary to cook at the high temperatures
indicated in standard cookbooks. Because the food does not reach too high a
temperature, it can be safely left in the cooker all day without burning. It is
best to start cooking before noon, but depending on the latitude and weather,
food can be cooked either early or later in the day. The cooker can be used to
warm food and drinks and also to pasteurize water or milk.[6]
Panel solar cookers are inexpensive
solar cookers that use reflective panels to direct sunlight to a cooking pot
that is enclosed in a clear plastic bag. A common model is the CooKit. Developed in 1994 by Solar
Cookers International, it is often produced locally by
pasting a reflective material, such as aluminium foil,
onto a cut and folded backing, usually corrugated cardboard. It is lightweight and folds for storage. When completely
unfolded, it measures about three feet by four feet (1 m by 1.3 m). Using
materials purchased in bulk, the typical cost is about US$5. However, CooKits
can also be made entirely from reclaimed materials, including used cardboard
boxes and foil from the inside of cigarette
boxes.[7]
The CooKit is considered a
low-to-moderate temperature solar cooker, easily reaching temperatures high
enough to pasteurize water or cook grains such as rice. On a sunny day, one
CooKit can collect enough solar energy to cook rice, meat or vegetables to feed
a family with up to three or four children. Larger families use two or more
cookers.
The HotPot is an advanced
panel cooker design that includes a glass bowl with an inner black steel liner
and a glass top. The panel has polished aluminium sections that fold flat. The
HotPot has high thermal gain due to exploiting the greenhouse effect. The HotPot is being used in various field projects around
the world.[8]
Parabolic
reflectors
If a reflector is axially
symmetrical and shaped so its cross-section is a parabola,
it has the property of bringing light that has come from a very distant source
such as the sun, with rays of light are effectively parallel, to a point focus.
If the axis of symmetry is aimed at the sun, any object that is located at the
focus receives highly concentrated sunlight, and therefore becomes very hot.
This is the basis for the use of this kind of reflector for solar cooking.
Paraboloidal
reflectors
Paraboloids are compound curves,
which are more difficult to make with simple equipment than single curves.
Although paraboloidal solar cookers can cook as well as a conventional oven,
they are difficult to construct. Frequently, these reflectors are made using
many small segments that are all single curves which together approximate
compound curves.
Although paraboloids are difficult
to make from flat sheets of solid material, they can be made quite simply by
rotating open-topped containers which hold liquids. The top surface of a liquid
which is being rotated at constant speed around a vertical axis naturally takes
the form of a paraboloid. Centrifugal force causes material to move outward from the axis of rotation
until a deep enough depression is formed in the surface for the force to be
balanced by the levelling effect of gravity.
It turns out that the depression is an exact paraboloid. If the material
solidifies while it is rotating, the paraboloidal shape is maintained after the
rotation stops, and can be used to make a reflector.[9]
This rotation technique is sometimes used to make paraboloidal mirrors for
astronomical telescopes, and has also been used for solar cookers. Devices for
constructing such paraboloids are known as rotating furnaces.
Paraboloidal reflectors generate
high temperatures and cook quickly, but require frequent adjustment and
supervision for safe operation. Several hundred thousand exist, mainly in China.[citation needed] They are especially useful for large-scale institutional
cooking.
A Scheffler cooker (named after its
inventor, Wolfgang Scheffler) uses a large ideally paraboloidal reflector which is
rotated around an axis that is parallel with the earth's using a mechanical
mechanism, turning at 15 degrees per hour to compensate for the earth's
rotation. The axis passes through the reflector's centre of mass, allowing the
reflector to be turned easily. The cooking vessel is located at the focus which
is on the axis of rotation, so the mirror concentrates sunlight onto it all
day. The mirror has to be occasionally tilted about a perpendicular axis to
compensate for the seasonal variation in the sun's declination.
This perpendicular axis does not pass through the cooking vessel. Therefore, if
the reflector were a rigid paraboloid, its focus would not remain stationary at
the cooking vessel as the reflector tilts. To keep the focus stationary, the
reflector's shape has to vary. It remains paraboloidal, but its focal length
and other parameters change as it tilts. The Scheffler reflector is therefore
flexible, and can be bent to adjust its shape. It is often made up of a large
number of small plane sections, such as glass mirrors, joined together by
flexible plastic. A framework that supports the reflector includes a mechanism
that can be used to tilt it and also bend it appropriately. The mirror is never
exactly paraboloidal, but it is always close enough for cooking purposes.[10]
Sometimes the rotating reflector is
located outdoors and the reflected sunlight passes through an opening in a wall
into an indoor kitchen, often a large communal one, where the cooking is done.[11]
Paraboloidal reflectors that have
their centres of mass coincident with their focal points are useful. They can
be easily turned to follow the sun's motions in the sky, rotating about any
axis that passes through the focus. Two perpendicular axes can be used,
intersecting at the focus, to allow the paraboloid to follow both the sun's
daily motion and its seasonal one. The cooking pot stays stationary at the
focus. If the paraboloidal reflector is axially symmetrical and is made of
material of uniform thickness, its centre of mass coincides with its focus if
the depth of the reflector, measured along its axis of symmetry from the vertex
to the plane of the rim, is 1.8478 times its focal length. The radius of the
rim of the reflector is 2.7187 times the focal length. The angular radius of
the rim, as seen from the focal point, is 72.68 degrees.[12]
Parabolic
troughs
Parabolic troughs are used to concentrate sunlight for solar-energy purposes.
Some solar cookers have been built that use them in the same way.[13]
Generally, the trough is aligned with its focal line horizontal and east-west.
The food to be cooked is arranged along this line. The trough is pointed so its
axis of symmetry aims at the sun at noon. This requires the trough to be tilted
up and down as the seasons progress. At the equinoxes, no movement of the
trough is needed during the day to track the sun. At other times of year, there
is a period of several hours around noon each day when no tracking is needed.
Usually, the cooker is used only during this period, so no automatic sun
tracking is incorporated into it. This simplicity makes the design attractive,
compared with using a paraboloid. Also, being a single curve,
the trough reflector is simpler to construct. However, it suffers from lower
efficiency.
It is possible to use two parabolic
troughs, curved in perpendicular directions, to bring sunlight to a point focus
as does a paraboloidal reflector.[14]
The incoming light strikes one of the troughs, which sends it toward a line
focus. The second trough intercepts the converging light and focuses it to a
point.[15]
Compared with a single paraboloid,
using two partial troughs has important advantages. Each trough is a single curve,
which can be made simply by bending a flat sheet of metal. Also, the light that
reaches the targeted cooking pot is directed approximately downward, which
reduces the danger of damage to the eyes of anyone nearby. On the other hand,
there are disadvantages. More mirror material is needed, increasing the cost,
and the light is reflected by two surfaces instead of one, which inevitably
increases the amount that is lost.
Experimental arrangements of this
kind have been tested, and have worked well. The two troughs have been held in
a fixed orientation relative to each other by being both fixed to a wooden
frame.[16]
The whole assembly of frame and troughs has to be moved to track the sun as it
moves in the sky.
Spherical
reflector
The Solar Bowl is a unique
concentrating technology used by the Solar Kitchen in Auroville,
India.
Unlike nearly all concentrating technologies that use tracking reflector
systems, the solar bowl uses a stationary spherical reflector.[17]
This reflector focuses light along a line perpendicular to the sphere's surface
and a computer control system moves the receiver to intersect this line. Steam
is produced in the solar bowl's receiver at temperatures reaching 150 °C (302
°F) and then used for process heat in the kitchen where 1,000 meals per day are
served.[18]
High-tech
approaches
High-tech solar kettles can use evacuated glass tubes to capture, accumulate
and store the solar energy needed to power the kettle. Besides heating liquids,
since the stagnating temperature of solar vacuum glass tubes is a high 220 °C
(428 °F), these solar kettles can also deliver dry heat and function as ovens
and autoclaves. Moreover, since solar vacuum glass tubes work on accumulated
rather than concentrated solar thermal energy, these solar kettles only need
diffused sunlight to work and need no sun tracking at all. If solar kettles use
solar vacuum tubes technologies, the vacuum insulating properties will keep
previously heated water hot throughout the night. Examples are the SK-TF,[19]
or the SunRocket Solar Kettle.[20]
Solar box cookers can be equipped
with a conventional electrical heating element for cloudy days or nighttime
cooking. Developed primarily for use in first world countries where both solar
energy and electricity usage is abundant, a hybrid solar ovens can be a
convenient and reliabile cooking appliance. They currently, however, lack the
cost advantages of some other types of solar cookers, and so their use in third
world countries where electricity or fuel sources simply do not exist has been
limited. A hybrid solar grill consists of an adjustable paraboloidal reflector
suspended in a tripod with a movable grill surface.[21]
These outperform solar box cookers in temperature range and cooking times. When
solar energy is not available, the design uses any conventional fuel as a heat
source, including gas, electricity, or wood.
Advantages
and disadvantages
Solar cookers use no fuel, which
means that their users do not need to fetch or pay for firewood, gas,
electricity, or other fuels. Therefore, over time a solar cooker can pay for
itself in reduced fuel costs. Since it reduces firewood use, the solar cooker
reduces deforestation and habitat loss. Since there are about 2 billion people
who are still cooking on open fires, widespread use of solar cookers could have
large economic and environmental benefits.[22]
Solar box cookers attain
temperatures of up to about 165 °C (325 °F), so they can be used to sterilize
water or prepare most foods that can be made in a conventional oven or stove,
from baked bread to steamed vegetables to roasted meat. When solar ovens are
placed outside, they do not contribute unwanted heat inside houses.
Solar cookers do not produce any
smoke as a product of combustion. The indoor concentration of health-damaging
pollutants from a typical wood-fired cooking stove creates carbon monoxide and
other noxious fumes at anywhere between seven and 500 times over the allowable
limits.[23]
Fire-based cooking also produces ashes and soot, which make the home dirtier.
However, any type of cooking, including solar cooking, can evaporate grease,
oil, etc., from the food into the air.
Unlike cooking over an open fire,
children cannot be burned by touching many types of solar cookers, which are
made from cardboard or plastic and do not get hot. Unlike all fuel-based
cooking arrangements, these solar cookers are not fire hazards.
However, solar cookers that concentrate sunlight, e.g., those with paraboloidal
reflectors, do produce high temperatures which could cause injury or fire.
Solar cookers are less useful in
cloudy weather and near the poles (where the sun is low in the sky or below the
horizon), so a fuel-based backup heat source is still required in these
conditions. Also, solar cooking provides hot food during or shortly after the
hottest part of the day, rather than the evening when most people like to eat.
The "integrated solar cooking" concept recognizes these limitations
and includes a fuel-efficient stove and an insulated heat storage container so
the food can be served later, providing a complete solution to this problem.
It has been recognized that solar
cookers are limited to cooking on clear days. Moreover, most people want to eat
hot food late in the day, when the sun is low or has already set. For these
reasons, solar cooking advocates are recognizing the need for combining three
devices for a total cooking solution: a) some type of solar cooker; b) a
fuel-efficient cookstove; c) an insulated storage container such as a basket filled
with straw to store heated food. Hot food will continue to cook for hours if it
is stored in a well-insulated container. With this three-part solution, fuel
use is minimized while still providing hot meals reliably. This concept is
referred to as "integrated solar cooking"[24]
or the "integrated cooking method".[25]
Many solar cookers take longer to
cook food than would a fuel-based oven. Using solar cookers therefore requires
that food preparation be started several hours before the meal. However, it
requires less hands-on time during the cooking, so this is often considered a
reasonable trade-off.
Cooks may need to learn special cooking
techniques to fry common foods, such as fried eggs
or flatbreads
like chapatis
and tortillas.
It may not be possible to safely or completely cook some thick foods, such as
large roasts,
loaves of bread, or pots of soup, particularly in small panel cookers; the cook may need to
divide these into smaller portions before cooking.
Some solar cooker designs are
affected by strong winds, which can slow the cooking process, cool the food,
and disturb the reflector. In these cases it is necessary to anchor the
reflector with string and weights.
Projects
Students perform an experiment using
a solar cooker built out of an umbrella
Michael Hönes of Germany
has established solar cooking in Lesotho,
enabling small groups of women to build up community bakeries using solar
ovens.[26]
Cardboard, aluminium foil, and
plastic bags for well over 10,000 solar cookers have been donated to the
Iridimi refugee camp and Touloum refugee camps in Chad by the combined efforts of the Jewish World Watch, the Dutch foundation KoZon, and Solar
Cookers International. The refugees construct the cookers
themselves, using the donated supplies and locally purchased Arabic gum,[27]
and use them to prepare midday and evening meals. The goal of this project was
to reduce the Darfuri women's need to leave the relative safety of the camp to
gather firewood, which exposed them to a high risk of being beaten, raped, kidnapped, or murdered.[28][29]
It has also significantly reduced the amount of time women spend tending open
fires each day, with the results that they are healthier and they have more
time to grow vegetables for their families and make handicrafts for export.[27]
By 2007, the Jewish World Watch had trained 4,500 women and had provided 10,000 solar
cookers to refugees. The project has also reduced the number of foraging trips
by as much as 70 percent, thus reducing the number of attacks.[30]
Some Gazans have started to make solar cookers
made from cement bricks, mud mixed with straw and two sheets of glass. About 40
to 45 Palestinian households reportedly have started using these solar cookers.[31]
Bysanivaripalle, a silk-producing
village that is 125 km (78 mi) northwest of Tirupati in the Indian state of in Andhra Pradesh,
is the first of its kind: an entire village that uses only solar cooking.
Intersol, an Austrian non-governmental
organisation, sponsored the provision of
powerful "Sk-14" parabolic solar cookers in 2004.[32]
The link to the entire article with pictures
and the reference list is:
http://en.wikipedia.org/wiki/Solar_cooker
Here's a link on making a solar oven
at home:
http://www.hometrainingtools.com/build-a-solar-oven-project/a/1237/
1 comment:
Reclaimed bricks are perfect in helping to construct or restore features in a home. They can help to add a bit of character and traditional feel to the home, and there are many styles and varieties of reclaimed brick available.
Post a Comment